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A Primer On Computer Simulation
of Hydrocarbon Reservoirs

Eugene A. Lang, Jr. *

Powerful computers with the capacity to simultaneously solve vast
numbers of equations have made possible many new analytic tools. One
such tool is the computer simulator. A computer simulator is a complex
mathematical model of an event or phenomenon that utilizes both data
(observed facts) and opinion (where the facts are not known).,

With computer simulation, the modeler must identify a real-world
reference system. He then constructs a mathematical model, which
describes such reference system in terms of equations or relationships.
Often, theoretical simplifications and assumptions must be used.2 Once
constructed, the model is run on a computer, and the results of the run
are tested against observed facts. If the computed results conflict with,
or do not account for, observed facts, the model is manipulated and rerun.3

This process of running the model, comparing the results with observed
facts, and then manipulating the model, is repeated until the modeler is
satisfied that the model accounts for the observed facts with an accept-
able degree of accuracy.4 Once this is accomplished, the model may be us-
ed with a degree of confidence in drawing inferences about, and making
predictions with respect to, the real-world reference system.5

While computer simulations can perform many functions, two are
especially important. First, simulations can give an overview of a com-

* Member of the Wyoming, Nebraska, Colorado and Texas Bars. The author would like
to thank John M. Parker, Craig W. Van Kirk and James H. Weber, who read the early drafts
of this article and made many helpful suggestions.

1. R. WEHMHOEFER, STATISTICS IN LITIGATION 142 (1985).
2. Note, Computer Simulation and Gaming: An Interdisciplinary Survey with a View

Toward Legal Application, 24 STAN. L. REv. 712 (1972).
3. See Eastin, The Use of Models in Litigation: Concise or Contrived? 52 CHi.-KENT

L. REV. 610, 612-15 (1976).
4. 2 D. BENDER, COMPUTER LAW § 4B.06, at 4B-30 (1984).
5. See Perma Research & Dev. v. Singer Co., 542 F.2d 111, 122 (2d Cir.) (Van

Graafeiland, Cir. J., dissenting), cert. denied, 429 U.S. 987 (1976).
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LAND AND WATER LAW REVIEW

plex set of data. Put simply, a mass of data can be organized, synthesized
and presented in a coherent fashion. Second, simulations can demonstrate
possible relationships between variables.6

Given the important functions which computer simulations can per-
form, it is not surprising that expert testimony based upon simulations
has been used in a wide variety of cases. Four cases illustrate this varie-
ty. First, in Southern Pacific Communications Co. v. American Telephone
& Telegraph Co.,7 plaintiff's expert witnesses presented a damages model
based upon an imaginary company that might have been "but for" defen-
dant's alleged antitrust violations. The modeled company, which provid-
ed extensive telecommunication services, came complete with a market
share, the ability to begin construction with the correct lead time, and
perfect knowledge about future demand and costs. Second, a much less
complicated computer model was relied upon by an expert witness in
Ideker, Inc., v. Missouri State Highway Commission," in which plaintiff
sought to recover costs incurred in hauling excess dirt from a construc-
tion project. The expert utilized a simulation to calculate haul cycles for
different types of equipment. Third, in a number of cases accidents have
been reconstructed by the use of models." Finally, in Sorensen v. Lower
Niobrara Natural Resources District,"0 expert witnesses based opinions
upon computer simulations of aquifer properties in testifying about the
effect of proposed water wells upon existing wells.

With use there is also the potential for abuse. As with other scientific
evidence," there is considerable potential for misleading a jury with com-
puter simulations. An expert witness, armed with computer printouts and
the concomitant explanatory charts and graphs, can give the appearance
of scientific acceptability to his position even though the model underly-
ing his testimony is fraught with incomplete data and unreasonable
assumptions. For the lawyer, it is a formidable task to understand what
it is this witness is purporting to do and cross-examine such witnesses
in a manner intelligible to a jury.

This article considers the use in litigation of one type of model: com-
puter simulations of hydrocarbon-bearing reservoirs. Such models can be

6. Eastin, supra note 3, at 612.
7. 556 F. Supp. 825, 1073-93 (D.D.C. 1983), aff'd, 740 F.2d 980 (D.C. Cir. 1984), cert.

denied, 105 S. Ct. 1359 (1985).
8. 654 S.W.2d 617, 625 (Mo. Ct. App. 1983).
9. See, e.g., Starr v. Campos, 134 Ariz. 254, 655 P.2d 794, 796-98 (Ct. App. 1982); Schaef-

fer v. General Motors Corp., 372 Mass. 171, 360 N.E.2d 1062, 1066-67 (1977). In each of
these cases, the court expressed reservations as to the admissibility of expert testimony
based upon computer simulations which purport to present models reconstructing accidents.
It should be noted that these cases involve an unusual application of simulations; simula-
tions are typically used to predict the future, not reconstruct the past.

10. 221 Neb. 180, 184, 376 N.W.2d 539,543-44 (1985). With respect to water allocation
problems, see Schaab, Prior Appropriation, Impairment, Replacements, Models and Markets,
23 NAT. RES. J. 25, 45-46 (1983), where the author states that "an accurate Icomputer] model
can be substituted for the physical reality for all relevant judicial and administrative pur-
poses.

11. 22 C. WRIGHT&K. GRAHAM, FEDERAL PRACTICE AND PROCEDURE: EVIDENCE § 5217,
at 295 (1978 & Supp. 1986).

Vol. XXII
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1987 COMPUTER SIMULATION OF HYDROCARBON RESERVOIRS 121

used in various types of oil and gas cases. For example, simulations can
be used in cases concerning whether certain areas are in communication"2
or in disputes between operators as to the proper development of a field. 3

In the first part of this article, reservoir simulation is described in
detail. Specifically, the conceptual basis for the computer simulation of
hydrocarbon reservoirs and the manner in which a model is constructed
will be examined. The manipulation of the model, that is the "history
matching process," is described. The first part of this article concludes
with a general discussion of certain abuses of computer simulation.

The use of computer simulations in litigation raises many issues, a
number of which are addressed in the second part of this article. Includ-
ed is a discussion of the admissibility of expert testimony which is based
upon a simulation of a reservoir. Also considered are discovery-related
issues. The author hopes that the reader will gain a basic understanding
as to what an expert witness is attempting to do when using a computer
simulation of a hydrocarbon reservoir.

COMPUTER SIMULATION OF HYDROCARBON RESERVOIRS

Conceptual Basis
A hydrocarbon reservoir can be produced just once. If the optimal

production method is not used, hydrocarbons which otherwise might be
produced may remain forever in the ground. A computer simulation allows
an operator to "produce" a field more than once. 4 After developing a suf-
ficiently accurate model of a reservoir, the modeler can test various pro-
duction methods. For example, the production rates, well spacing or the
timing of drilling development wells can be varied. By testing a number
of possible methods, the operator is better able to choose the production
plan which will increase hydrocarbon recovery."

Models have been used for quite some time. Indeed, the basic building
block of computer simulation of hydrocarbon reservoirs, the "tank" model,
has been used for decades. 6 As suggested by the name, the tank model
views a reservoir as a container or tank. Graphically, the reservoir is shown
as a cube or block. The tank is assumed to be homogeneous, or have uni-
form properties throughout. For example, the porosity 17 and permeability6

12. United States v. Standard Oil Co., 545 F.2d 624, 630 (9th Cir. 1976).
13. Majority of Working Interest Owners in Buck Draw Field Area v. Wyoming Oil

& Gas Conservation Comm'n, 721 P.2d 1070 (Wyo. 1986).
14. H. CRICHLOW, MODERN RESERVOIR ENGINEERING-A SIMULATION APPROACH 18

(1977).
15. For an excellent case study, see C. Van Kirk, Jormar-Reservoir Performance and

Numerical Simulation of a Classic Denver-Julesburg Basin Oil Field, a paper prepared for
the Rocky Mountain Regional Meeting of the Society of Petroleum Engineers of AIME held
in May 1976, Paper No. SPE 5890 (1976) (on file at the Land & Water Law Review office).

16. Odeh, Reservoir Simulation- What Is It? J. PETROLEUM TECH. 1383 (Nov. 1969);
G. THOMAS, PRINCIPLES OF HYDROCARBON RESERVOIR SIMULATION 3 (2d ed. 1982).

17. Porosity is the total volume of open spaces, pores or voids in a rock or sediment.
It is expressed as a percentage. H. LEVIN, CONTEMPORARY PHYSICAL GEOLOGY 345 (2d ed.
1986).

18. Permeability refers to the relative ease with which a fluid moves through porous
media. Id. at 347.
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values do not vary from point to point in the reservoir. Furthermore,
pressure is the same throughout the reservoir, and a change in pressure
in one point of the reservoir is instantaneously reflected at all other points
in the reservoir. Finally, the reservoir is said to have sealed boundaries
which do not allow fluids to naturally flow in or out of it.1

Once the reservoir is so described, the volumes of oil, gas, and water
in-place can be calculated. Also, the cumulative effect of production can
be calculated by use of the Material Balance Equation, commonly referred
to as the "MBE." A simple expression of the MBE for oil is cumulative
net oil withdrawal equals the oil originally in-place minus the oil remain-
ing in-place.

2 0

The tank model, while sometimes useful, has serious drawbacks. First,
reservoirs typically are not homogeneous. There can be considerable varia-
tion in the rock and fluid properties. Second, a reservoir's boundaries are
rarely sealed. A reservoir, for example, may be connected to a regional
aquifer. As the reservoir is produced, its pressure will decrease relative
to the aquifer. This will create a pressure differential which could cause
water to enter the reservoir. Third, the tank model also assumes that any
change in reservoir pressure will be reflected instantaneously throughout
the reservoir. In reality, if a reservoir covers a square mile, production
from a well in the north end of the reservoir will create a pressure drop
there that will not be immediately apparent at the south end. By failing
to recognize pressure differentials, the tank model does not take into ac-
count fluid flow in the reservoir.2

To overcome these deficiencies, the modeler can divide the reservoir
into two or more tanks or cells and allow fluids to flow between the cells.
Each cell can be given different rock and fluid properties. In this manner,
the heterogeneous nature of the reservoir can be more accurately reflected
in the model. The use of multiple cells also allows one to discard the sim-
ple tank model concept of pressure uniformity throughout the reservoir.
By allowing for multiple pressure levels, fluid flow within a reservoir can
be evaluated. 2

Fluid flow within the reservoir is calculated by the use of Darcy's law,
which was formulated in 1856.23 Darcy's law provides that the velocity
of a fluid in a porous medium, for example, reservoir rock, is directly pro-
portional to the pressure gradient and inversely proportional to the fluid
viscosity.

24

19. Odeh, supra note 16.
20. Id
21. G. THOMAS, supra note 16, 3-4.
22. Odeh, supra note 16, at 1383-84.
23. B. CRAFPT & M. HAWKINS, APPLIED PETROLEUM RESERVOIR ENGINEERING 259(1959).

24. Permeability of rock is expressed in darcy units. A rock of one darcy permeability
is one in which a fluid of one centipoise viscosity will move at a velocity of one centimeter
per second under a pressure gradient of one atmosphere per centimeter. Reservoir rocks with
one darcy permeability are above average. Thus, permeabilities are commonly expressed in
units one-thousandth as large, the millidarcy or 0.001 darcy. Id. at 260.

Vol. XXII
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1987 COMPUTER SIMULATION OF HYDROCARBON RESERVOIRS 123

The simple tank model, as described above, is a zero-dimensional model
because reservoir properties and pressure are uniform throughout. If the
reservoir is broken down into two or more cells in a single row and fluids
are permitted to flow from one cell to another, a one-dimensional model
is created. By breaking down the reservoir into numerous cells in a single
plane and permitting horizontal flow through all common faces, a two-
dimensional model is created. A three-dimensional model is created when
cells are also stacked on top of a two-dimensional model and vertical fluid
flow is added to the model 2 5

Even if the model has only a handful of cells, it can be a most time-
consuming task to compute the MBE within each cell and the fluid flow
among the cells. Computers can perform this task with great speed. As
Odeh has observed:

Since a simulator can consist of hundreds of cells, keeping account
of the MBE for each cell is a formidable bookkeeping operation
ideally suited to digital computation. But we emphasize once again
that the principles and equations used in reservoir simulation are
not new. They only appear so because of the complexity of the
bookkeeping.

26

Setting Up the Simulation

In setting up a model, the first consideration is the type of physical
system, that is, a reservoir, with which one is dealing.27 Reservoirs are
typically classified by the phase or phases (oil, gas, or oil and gas) pres-
ent in the reservoir at the time of discovery and then by the energy
systems which contribute to production.'2 An example of a simple reser-
voir is a volumetric gas reservoir. Such a reservoir is a gas accumulation
that experiences no water influx and the gas does not change phases (from
gas to liquid) as production decreases the reservoir's pressure. Slightly
more complex is an oil accumulation in contact with an aquifer. Produc-
tion of such fields often leads to water encroachment. A more complex
reservoir is one with a gas cap and an oil ring which is in communication
with a regional aquifer. By producing such a field and thereby reducing
its pressure, one must contend with gas coming out of solution from the
oil (solution gas) and water encroaching into the reservoir.29 Retrograde
condensate gas reservoirs are among the most difficult to operate. These
reservoirs can experience significant changes from the gas to the liquid
phase as they are produced.2 0

25. H. CRICHLOW, supra note 14, at 239-45; see also Staggs & Herbeck, Reservoir Simula-
tion Models-An Engineering Overview, J. PETROLEuM TECH. 1428, 1429-30 (Dec. 1971).

26. Odeh, supra note 16, at 1384.
27. H. CaIcHLow, supra note 14, at 238.
28. Bass, Reservoir Engineering in ROCKY MTN. MIN. L. FOUND., BASIC OIL AND GAS

TECHNOLOGY FOR LAWYERS AND LANDMEN 4-7 to 4-9 (1979) (Paper No. 4).
29. A gas cap is the portion of a reservoir occupied by free gas rather than solution

gas. Because it is less dense than oil, gas occupies the highest portion of the reservoir. Oil
is less dense than water. Thus, the oil will lie on top of the water. See 8 H. WILLIAMS &
C. MEYERS, OIL AND GAS LAW 355 (1984).

30. Bass, supra note 28, at 4-8.
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A number of different computer simulators have been developed for
the various types of reservoirs. Gas simulators are available to handle
gas volumetric reservoirs. The most commonly used and basic type of
simulator is the "black oil simulator." This type is used to simulate reser-
voirs in which oil (regardless of its color), gas and water are present.
Perhaps the most complex simulator is the compositional model, which
is used in simulating the natural depletion of either a volatile oil or a
retrograde gas condensate reservoir. These less-commonly used com-
positional models, which are expensive to develop and run, can account
for changes in the hydrocarbon components, for example, methane,
ethane, butane, propane, and the heavier ends. In addition, simulators
have been developed to handle special production situations such as water
flooding.'

Once the appropriate type of simulator is selected, the modeler chooses
the dimensions and grid size. The number of dimensions is largely depen-
dent upon practical considerations such as the degree of accuracy required,
the level of data available, the particular facet of the reservoir which is
being studied, and the money and time available.32 Set forth below are
examples of one-dimensional, two-dimensional or three-dimensional models
and their appropriate uses.

A one-dimensional model is appropriate when studying a simple linear
segment of a reservoir. Such a model can be constructed by stacking the
cells vertically, horizontally or in a curvilinear manner. A one-dimensional
model can be most helpful in studying gross fluid movement and pressure
distribution in a reservoir. In addition, a radial one-dimensional model is
used to study wellbore effects. A two-dimensional model can be best ap-
plied to problems concerning areal changes. Because such models can ac-
commodate variations in reservoir properties, they can be used to simulate
an entire reservoir system with many wells. These models can handle areal
effects of water flooding and gas injection. The areal coverage of two-
dimensional models also makes them a potential tool in analyzing lease
line drainage problems.3 3 Smaller two-dimensional models with radial grid
patterns can be used to model production rates in analyzing the deliver-
ability of gas wells .3

Three-dimensional models are used when more accuracy concerning
both the horizontal and vertical behavior of the reservoir must be studied.
For example, if a reservoir contains a gas cap and an oil ring and the trap-

31. G. THOMAS, supra note 16, at 6-7. Water flooding is a secondary recovery method
"in which water is injected into an oil reservoir for the purpose of washing the oil out of
the reservoir rock and into the base of the producing well." 8 H. WILLIAMS & C. MEYERS,
supra note 29, at 959.

32. Staggs & Herbeck, supra note 25, at 1430.
33. H. CRIcHLOW, supra note 14, at 291-94; see also Coats, Use and Misuse of Reser-

voir Simulation Models, J. PET'OLEuM TECH. 1391, 1395-96 (Nov. 1969). Coats' article is
often referred to in technical papers concerning reservoir simulations.

34. Staggs & Herbeck, supra note 25, at 1430; see also H. CRICaLOW, supra note 14,
at 239-43.

Vol. XXII
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1987 COMPUTER SIMULATION OF HYDROCARBON RESERVOIRS 125

ping mechanism is an anticine35 with great structural relief, such a model
could be used to study the possible movement of oil up-structure, where
it may not be recoverable, with the production of the gas cap. A three-
dimensional model may be useful if there are significant variations in rock
or fluid properties. For example, because of the manner in which the rocks
were deposited, the rock may be more (or less) permeable at the top than
at the bottom of the structure. A three-dimensional model can also be
employed to simulate a reservoir which contains impermeable beds in-
terspersed throughout the reservoir rock. Such beds, if large enough, can
restrict fluid flow.3

6

The same considerations which determine a model's dimensions also
determine the grid size. The grid's areal extent varies from model to
model.3 Moreover, more than one cell size is typically used in a grid. The
grid is smaller or more refined at the areas of interest (such as around
wells) to allow for better definition. Also, areas of increased heterogene-
ity may require a more refined grid.3" Larger cells can be used in those
portions of the model less important to the study. Because grid size can
influence the accuracy of the model, it is sometimes necessary to run sen-
sitivity studies to determine the effect the cell sizes have on the results.
Sensitivity studies are commonly used in cross-sectional problems to deter-
mine the number of layers to use in a model.39

The next step in constructing the model is to ascribe data to each cell.
This is one of the most critical steps in the model's development. As
discussed previously, the purpose of a reservoir simulation is to develop
a model which accurately accounts for observed data so it may be used
to predict the reservoir's behavior. If the model is based upon incomplete
or inconsistent data, the results will be meaningless, and the model will
have no validity in predicting the performance of the reservoir.

The following types of data are typically ascribed to each cell within
a model: (a) rock properties; (b) fluid properties; (c) production data; (d)
flow data; and (e) mechanical or operational data."0 The rock properties,
which include permeability, relative permeabilities, 4" porosity, formation

35. An anticline is "an upfold or arch of stratified rock in which the beds or layers bend
downward in opposite directions from the crest or axis of the fold." United States v. Stan-
dard Oil Co., 618 F.2d 511, 514 n.3 (9th Cir. 1980) (citing WEBSTER'S NEW INTERNATIONAL

DICTIONARY 94 (3d ed. 1971)).
36. H. CRICHLOW, supra note 14, at 243-44.
37. For example, Van Kirk, supra note 15, used cells that ranged in size from as little

as four acres up to 80 acres, while Staggs and Herbeck, supra note 25, at 1431, reported
good results with 160-acre grid cells.

38. H. CRICHLOW, supra note 14, at 79.
39. K. Aziz & A. SETTARI, PETROLEUM RESERVOIR SIMULATION 417 (1979). This text

is highly respected. See Aronofsky, Cull, Cox & Gaffney, Use and Abuse of Reservoir Simula-
tion - 1: Pressure Often Exists to Perform Expensive Reservoir Simulation, OIL & GAS J.
79, 81 (Nov. 5, 1984) [hereinafter Aronofsky, Part I].

40. H. CalCHLOW, supra note 14, at 160.
41. Relative permeability is the ratio of effective permeability to absolute permeabili-

ty. Absolute permeability is the permeability of a fluid when the pore space is at 100 per-
cent saturation. The effective permeability is the permeability of a rock to a particular fluid
when such fluid has a pore saturation of less than 100 percent. B. CRAFT & M. HAWKINS,

supra note 23, at 355-56.
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elevations, and formation thickness, are usually based upon a geological
study of the reservoir, which study precedes the simulation work.' 2 For-
mation elevations are derived from structure contour maps which show,
through the use of contours connecting points of equal elevation, the eleva-
tion of either the top or the bottom of a given formation relative to sea
level. Such elevations are commonly "picked" from electric logs" or deter-
mined by viewing cores. The rock thicknesses are determined by reference
to isopach maps. These maps use lines connecting points in a reservoir
with equal rock thickness. Similarly, isopermeability and isoporosity maps
are prepared.

The value for each rock property is specified for each cell. This may
be accomplished by placing a mylar copy of the grid over the contour map.
The appropriate value for a cell is determined by looking at the correspond-
ing area on the contour map and writing the value in the cell on the grid.
If more than one contour line crosses through a cell, an average value must
be used because the simulator treats each value as being uniformly
distributed throughout a given cell." From the mylar grid, the values can
be easily read and entered into the computer.

Fluid saturations must be specified for each cell. Fluid saturation is
that percentage of the rock pore space occupied by a particular fluid.45

These values can be determined by reference to net oil or net gas isopach
maps or the fluid contacts (gas-oil, gas-water or oil-water). Fluid contacts
are determined in turn by using wireline logs, drill-stem tests or cores.
Pressure and reservoir temperature data are also included in the cells.

A second broad category of data included in each cell is fluid data or
properties. Such data are commonly referred to as "pressure-volume-
temperature" or "PVT" data because these properties are determined in
a laboratory as a function of pressure and temperature by testing a fluid
sample taken from the reservoir. This data includes specific gravity and
viscosity.46 Another type of PVT data is the formation volume factor which
is based upon the relationship between surface volumes and reservoir
volumes of fluids. ' For example, the gas formation volume factor relates
a volume of gas in the reservoir to the volume of such gas at the surface
under standard conditions.41 Another important type of PVT data is the

42. Harris, The Role of Geology in Reservoir Simulation Studies, J. PETROLEUM TECH.
625 (May 1975); see also Poston& Gross, Numerical Simulation ofSandsone Reservoir Models,
SPE RESERVOIR ENGINEERING 423 (July 1986) (on file at the Land & Water Law Review
Office).

43. For a useful discussion of electric logs, see Hilchie, Well Logging, in ROCKY MTN.
MIN. L. FOUND., BASIC OIL AND GAS TECHNOLOGY FOR LAWYERS AND LANDMEN (1979) (Paper
No. 3).

44. H. CRICHLOW, supra note 14, at 193-95.
45. F. COLE, RESERVOIR ENGINEERING MANUAL 5 (2d ed. 1969).
46. Specific gravity is defined as the ratio of the density of a gas at a given temperature

and pressure to the density of air at the same temperature and pressure. B. CRAFT & M.
HAWKINS, supra note 23, at 16. Viscosity refers to the ability of a fluid to flow. 8 H. WILLIAMS
& C. MEYERS, supra note 29, at 949.

47. Bass, supra note 28, at 4-9 to 4-10.
48. B. CRAFT & M. HAWKINS, supra note 23, at 101-05.

Vol. XXII
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1987 COMPUTER SIMULATION OF HYDROCARBON RESERVOIRS 127

solution gas-oil ratio. This ratio expresses the volume of gas released from
the oil as the pressure in the reservoir decreases.

The third general category included in a model is historical oil, gas,
and water production data. Problems may arise with the accuracy of the
gas and water production figures. With respect to gas, there may be dif-
ficulties with the field meters. For example, because of poor maintenance,
the meter may not accurately measure the gas produced. Also, gas may
be unaccounted for because the gas used to fuel surface equipment or to
satisfy "free gas" clauses often is not metered. Finally, with respect to
older fields developed before rules governing the flaring of gas became
more strict, it may be difficult to ascertain the volume of gas which has
been flared. With respect to water, production records are normally not
maintained in the same manner as oil production records. On production
reports, water production is usually estimated by referring to oil produc-
tion. For example, for every barrel of oil produced a certain number of
barrels of water are also produced.

The fourth general type of data included in the cells which contain
wells is the productivity data. This is required by the simulator to com-
pute the production capability of the wells.4" One type of flow data is the
productivity index, which is the ratio of the rate of production (in stock-
tank barrels per day) to the pressure drawdown at the midpoint of the
formation.5"

The final type of data includes mechanical or operational data of the
wells. Included here are the casing size, tubing size, location of wellbore
perforations, and lift capability of the wells.' This type of data is especially
important in models which examine a single well.

A final point must be noted in constructing a model. Specifically, the
cells on the model's perimeter, the boundary cells, require special con-
sideration. If there is little or no interest in the outside limits of the reser-
voir, the permeability values for the outside edges of the boundary cells
can be set at zero, thus precluding flow into and out of the model. 2

However, if there are conditions of interest outside the principal reser-
voir under study, such as an aquifer or other fields which may be in com-
munication with the principal reservoir, the model must account for flow
across the boundary cells. This may be accomplished by adding a "source
term" to the boundary cells or by increasing the size of the model to in-
clude the additional area." It is not uncommon to use mixed boundary
conditions in models. For example, if there is water influx on the east side
of the reservoir and a sealing fault on the west side, flow cells will be used
on the former side and no-flow cells will be used on the latter.

49. H. CRicHLow, supra note 14, at 204.
50. B. CRAFT & M. HAWKINS, supra note 23, at 289-90.
51. See Bergeson, Basic Operational Engineering in RocKY MTN. MIN. L. FOUND., BASIC

Oi. AND GAS TECHNOLOGY FOR LAWYERS AND LANDMEN (1979) (Paper No. 2), for a general
discussion of wellbore mechanics.

52. D. PEACEMAN, FUNDAMENTALS OF NUMERICAL RESERVOIR SIMULATION 8-9 (1977).
53. H. CRICHLOW, supra note 14, at 78-9.
54. G. THOMAS, supra note 16, at 82.
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The reservoir as described above is combined with differential equa-
tions describing the physical processes forming a mathematical model of
the reservoir. These computer programs constitute computer models which
are referred to as reservoir simulators.5

History Matching

Once a computer model is constructed, it is run and the computed
results are compared against observed facts. The model is modified and
rerun if the computed results are not sufficiently close to the observed
facts, the model is modified and rerun. This process, by which the valid-
ity of the simulation is established, is repeated until there is satisfactory
agreement between the model's computed results and the observed facts.
This is referred to as "history matching."5 6

In the history matching process, the computer is programmed to
calculate or solve for a "match parameter" over a series of "time steps."
The match parameter is usually one of the following: (a) observed average
pressures; (b) observed flow rates; (c) observed water-oil ratios; or (d)
observed gas-oil ratios.57 A match parameter must be selected for which
one has sufficient observed data. For example, assume that the North field
(a hypothetical field), an oil field with a weak water drive, was discovered
in 1970. When the discovery well and each of the seven development wells
(drilled between 1971 and 1974) were completed, bottom-hole pressures
were obtained. However, from 1974 through early 1986 pressures were
not obtained on a field-wide basis; rather, sometimes when a well was
worked over, a bottom-hole pressure was obtained. In 1986, the operator
conducted a field-wide pressure survey as part of its data gathering for
a proposed water flood simulation study. In this simulation, average
pressure is a poor match parameter because of the twelve-year gap in the
field-wide pressure data. It would be far more sensible to use the water-
oil ratio as the match parameter because it is likely that monthly produc-
tion data is available.

The various points in time at which the match parameters are
calculated are called time steps. Using the North field example, if the
operator selects the water-oil ratio as the match parameter and uses time
steps covering a calendar-year, the simulator will calculate the water-oil
ratio as of the end of each year. In other words, with calendar-year time
steps the operator will not be able to obtain the water-oil ratio on any
given day within a particular year other than December 31.

There is considerable flexibility in selecting the time steps to be used
in simulation.58 If short time steps are used, however, computing time is

55. Id. at 4-5; K. Aziz & A. SETTARI, supra note 39, at 2-3.
56. Id. at 8-9.
57. K. Aziz & A. SETTARI, supra note 39, at 418-19. The water-oil ratio is the quotient

of all of the water produced from the reservoir and all of the oil produced therefrom. Similar-
ly, the gas-oil ratio is the quotient of all of the gas produced from the reservoir and of all
of the oil produced. B. CRAFT & M. HAWKINS, supra note 23, at 112.

58. Most computer programs which may be purchased include instructions concern-
ing the selection of time steps. H. CRICHLOW, supra note 14, at 286.
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1987 COMPUTER SIMULATION OF HYDROCARBON RESERVOIRS 129

increased. On the other hand, if the time steps are too long, there may
be undesirable oscillations in the fluid saturations and pressures within
cells containing wells."

Given the lack of complete data for any reservoir, it is highly unlikely
that a satisfactory history match will be obtained with initial runs of the
model. Therefore, the model must be modified. Because each reservoir is
unique, there are no specific rules to be followed in adjusting reservoir
parameters to obtain a history match. Adjustments are simply made on
a trial-and-error basis. 0 Moreover, the modeler must rely on experience
and intuition in determining the limit to which a given parameter can be
properly adjusted.

While there are no specific rules, there is a general rule which is fol-
lowed in history matching: the modeler should manipulate the parameters
which have the largest uncertainty and the largest influence on the solu-
tion.61 Clearly, it defeats the purpose of history matching if the modeler
were to modify known, reliable data originally entered into the reservoir
simulator simply to force a history match.62 Likewise, it is inefficient if
continual modifications are made to a reservoir parameter which, after
substantial variation in the initial runs, is shown to have little or no bear-
ing on the computed results.

Using the North field example again, the following illustrates some
steps that might obtain an acceptable history match. Assume the sim-
ulator stopped running in the 1983 time step because it had produced all
of the recoverable oil-in-place by that point. Obviously, the simulator is
defective because it does not account for the field's production of oil
through 1986. For the modeler to obtain a history match, the volume of
oil originally in-place in 1970 (the initial condition of the field) might be
increased. Such an increase may be obtained by increasing the pore space
in the reservoir. Also, the oil saturation may be increased, the water satura-
tion decreased, or both. Consideration may also be given to lowering the
water-oil contact. All of these steps, taken individually or collectively, in-
creases the original oil-in-place in the model. In making such changes,
however, the modeler must avoid adversely affecting the model in other
ways.63

Conversely, if the North field model produces too much oil, the modeler
should take steps opposite to those suggested above. In addition, the

59. Id.
60. K. Aziz & A. SETTARI, supra note 39, at 419.
61. Id.
62. Staggs & Herbeck, supra note 25, at 1428.
63. H. CRICHLOW, supra note 14, at 251. If, after numerous runs, the observed produc-

tion rates remain higher than the production rates calculated by the simulator, this would
indicate there may be an outside energy source influencing the productive area of the reser-
voir defined in the model. Such energy source could be either a previously unrecognized water
drive or the presence of additional productive zones. In this situation, Crichlow suggests
that "the presence of communicating zones should be looked into as the last resort and the
engineer should not flagrantly increase the productive acreage unless the evidence is over-
powering." Id. at 260.
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modeler might also decrease the model's permeability values to slow the
flow of oil. It may also be necessary to manipulate the productivity data
for the wells.

Manipulations, such as those discussed above, will be made and the
model rerun until an acceptable history match is achieved. Unfortunate-
ly, it is quite difficult to objectively define what constitutes an "accept-
able history match.""6 Indeed, determining what is an acceptable history
match is somewhat subjective. One author, for example, defines a good
history match as "that set of rock, fluid, and relative permeability data
which acting together produce the most reasonable results at a given point
in time."" Other authors simply state that a history match is acceptable
if the calculated results are "close" to the observed data;"6 they do not,
however, indicate how "close" the match must be.

Ultimately, the acceptability of a history match depends on the
modeler's goal. If, for example, the modeler intends to use a coarse model
simply to gain insight into a problem, it is not necessary for the calculated
match parameter to exactly equal the observed data. A plot of the
calculated match parameters which generally parallel the observed data
may constitute an acceptable history match. On the other hand, a modeler
who uses a large three-dimensional model to determine the optimum
method of producing a large oil field may not be satisfied with the history
match until the calculated results and observed data substantially agree.

Once the history match is acceptable, the modeler has validated the
model and may use it to make predictions. The modeler can predict sim-
ply by allowing the model to run a number of time steps beyond the end
of the historical period used in the history matching process without modi-
fying the manner in which the reservoir is produced. The modeler could
also experiment with different means of producing the reservoir. As men-
tioned earlier, these experiments may entail varying production rates, well
spacing, or the number and location of additional developmental wells.
For specialized problems, such as water flood models, different injection
and withdrawal schemes may be tried. The goal of these experiments is
to determine which production method optimizes hydrocarbon recoveries.67

It should be noted that the validity of the predictions made by a
simulator decreases as one runs the model farther beyond the historical
period." To reduce this problem, it is sometimes advisable to update a
model study and attempt a new history match.

64. Aronofsky, Cull, Cox & Gaffney, Use and Abuse of Reservoir Simulation- 2: Why
Simulation Studies Can Be Good or Bad, OIL & GAs J. 109, 110 (Nov. 19, 1984) [hereinafter
Aronofsky, Part Il].

65. H. CRICHLOW, supra note 14, at 249 (emphasis supplied).
66. K. Aziz & A. SETTARI, supra note 39, at 418.
67. G. THOMAS, supra note 16, at 9.
68. K. Aziz & A. SETTARI, supra note 39, at 420.
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Misuse of Reservoir Simulation

A reservoir simulator is simply a tool.69 Like all other tools, it can be
misused. Crichlow has noted:

Some people's concept of simulation borders on the incredible: the
simulator is a black box of unknowns which miraculously produces
results that are in some way sacred, numbers that are infallible
to all their significant digits. This is the blue-sky approach to
simulation.7

Three of the more prevalent misuses of reservoir simulation are noted
below.

Perhaps the greatest misuse of reservoir simulation is "overkill," that
is, using a model that is too sophisticated and complex for the problem
under consideration." As a general rule, a modeler should select the least
complicated model and grossest reservoir description that will allow the
desired estimation of reservoir performance. 2 Indeed, at the outset the
engineer must consider whether a simulation of a reservoir is even neces-
sary. If it is determined that a model, rather than conventional reservior
studies, is needed, the fewest dimensions and cells possible should be
used."

A second misuse of reservoir simulation, closely related to the first,
is construction of a model without regard to cost. The development of a
model can be expensive in terms of both time and money. One may sim-
ulate all possible field development plans in connection with the entire
range of assumptions concerning the description of the reservoir if one
has the wherewithall to do so.7' The efficacy of such testing is doubtful
at best.

The third prevalent misuse of reservoir simulation is the construction
of models without adequate data.'5 The quality of the history match is
a function of the quality of the ascribed in-put data. A history match (us-
ing the term rather loosely) may always be forced by simply "faking-in"
critical, unknown data.6 By doing so, all the modeler will have accomp-
lished is to demonstrate that, with enough patience, one can force a com-
puter to calculate the desired results. However, as to developing a tool
which can be used with confidence to predict the performance of a reser-
voir, the modeler will have completely failed.

69. Aronofsky, Cull, Cox & Gaffney, Use and Abuse of Reservoir Simulation- 3: Com-
mon Pitfalls in Reservoir Simulation, OIL & GAS J. 116, 118 (Dec. 3, 1984).

70. H. CRICHLOW, supra note 14, at 1-2.
71. Aronofsky, Part I, supra note 39, at 81; Coats, supra note 44, at 1396; H. CRICHLOW,

supra note 14, at 237; Staggs & Herbeck, supra note 25, at 1429.
72. Coats, supra note 33, at 1396; Staggs & Herbeck, supra note 25, at 1436.
73. K. AzIz & A. SETTARI, supra note 39, at 4.
74. Aronofsky, Part I, supra note 39, at 81.
75. Coats, supra note 33, at 1396-97; Staggs & Herbeck, supra note 25, at 1436.
76. Staggs & Herbeck, supra note 25, at 1434. See also Aronofsky, Part I, supra note

39, at 82, where reference is made to modelers who flog simulators to achieve history matches
by the "brutal adaption" of data.
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SELECTED LEGAL PROBLEMS

This part of the article discusses two subjects arising from the use
of reservoir simulators as the basis for expert testimony. The first sub-
ject involves the admissibility of such testimony when based upon a prop-
erly constructed model. The second subject concerns discovery and the
types of documentation that one would expect to discover.

Admissibility of Testimony

It is common practice for experts outside of the courtroom to rely upon
the reports, notes, observations, data or computer printouts prepared by
others in formulating an opinion. However, at trial such documents may
be inadmissible as hearsay. Formerly, expert testimony had to rely ex-
clusively upon the evidence in the case. If no testimony was presented
at trial, reflecting the substance of such documents, it could have been
argued that expert testimony based solely upon a review of the documents
was inadmissible. 77

Rule 703 of the Federal Rules of Evidence removes this argument."
It provides:

The facts or data in the particular case upon which an expert
bases an opinion or inference may be those perceived by or made
known to him at or before the hearing. If of a type reasonably
relied upon by experts in the particular field in forming opinions
or inferences upon the subject, the facts or data need not be ad-
missible in evidence.7 9

The proper focus, thus, is upon whether the data underlying the expert's
opinion are of a type reasonably relied upon in his field of expertise.80 To
focus upon the admissibility of the underlying data itself would miss the
point."' Rule 703 brings judicial practice in line with the common prac-
tice of experts outside the courtroom. 2

The word "reasonable" in Rule 703 is interpreted by two leading com-
mentors as being synonymous with "customarily.""3 Accordingly, the legal
issue becomes whether experts in the field customarily rely upon the
material in performing their work.8 4 The court must determine whether
this test has been met. However, if the witness is qualified and a technical
field is involved, the court should give considerable weight to the
testimony of the expert as to whether the data underlying the opinion
is adequate."5

77. Younger, Computer Printouts in Evidence: Ten Objections and How to Overcome
Them, 2 LITIGATION 28, 30 (Fall 1975) (erroneously referring to FED. R. EVID. 704).

78. 3 J. WEINSTEIN & M. BERGER, WEINSTEIN'S EVIDENCE 703[03] (1985).
79. FED. R. EVID. 703.
80. J. WEINSTEIN & M. BERGER, supra note 78, at 703-17.
81. D. LOUISELL & C. MUELLER, FEDERAL EVIDENCE § 389, at 661 (2d ed. 1979).
82. M. GRAHAM, HANDBOOK OF FEDERAL EVIDENCE § 703.1, at 622 (1986).
83. J. WEINSTEIN & M. BERGER, supra note 78, at 703-16; Younger, supra note 77, at 30.
84. J. WEINSTEIN & M. BERGER, supra note 78, at 703-16 to -17.
85. Id. at 703-16; see also D. LOUISELL & C. MUELLER, supra note 80, at 661-63.
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1987 COMPUTER SIMULATION OF HYDROCARBON RESERVOIRS 133

There can be no doubt that expert testimony based upon the specific
type of computer simulation under consideration here, reservoir simula-
tion, is admissible under Rule 703.86 Reservoir simulators have been in
use since 1955.7 One of the leading experts in the field wrote in 1977 that
"[olver the past decade, numerical reservoir simulation has gained wide
acceptance throughout the petroleum industry.''"" Two others noted as
early as 1971 that reservoir simulation was then passing into "everyday
use" by reservoir engineers. 9 Clearly, reservoir simulators are customarily
used in the petroleum industry as a tool to assist in making reservoir
management decisions.

However, it could be argued under Rule 703 that, if the reservoir
simulation underlying the expert's proposed testimony is not properly con-
ducted, such testimony should not be admitted. This argument presumes
that an expert in petroleum engineering would not reasonably rely upon
an invalid or improper simulator in formulating an opinion. Case law sup-
ports this argument.9"

Given that the modeler has wide latitude in constructing the simulator
and in manipulating the data and because there is no defined standard
as to what constitutes an acceptable history match, it will be difficult for
a court to conclude that a model is so unreliable that an expert may not
base his opinion on it, except in blatant cases. In the typical case, the
issue thus becomes not whether this expert testimony is admissible, but
how much weight the trier of fact should give to expert testimony based
upon a reservoir simulator. This, in turn, requires effective cross-
examination to demonstrate any improper actions in the construction or
manipulation of the underlying simulator.

Discovery Matters

Because expert testimony based upon a properly conducted reservoir
simulation is admissible, discovery relating to reservoir simulation must
be considered. Preliminarily two points must be addressed. First, as in-
dicated above, there is considerable potential for misuse in reservoir
simulation.92 A modeler so inclined may slant or tilt the simulator in such

86. Those commentators who have generally addressed the issue have concluded that
Rule 703 allows for the admission of expert testimony based upon a computer simulation.
See Bernacchi & Johnston, Trial Objections to Computer-Based Evidence and Methods of
Overcoming Them, in THE USE OF COMPUTERS IN LITIGATION 341, 367-68 (J. Young, M. Kris
& H. Trainor eds. 1979); Jenkins, Computer-Generated Evidence Specially Prepared for Use
at Trial, 52 Cm.-KENT L. REv. 600, 607-08 (1976).

87. Aronofsky, Cox & Lane, Reservoir Simulation Moves into Third Generation, OIL
& GAS J. 75 (Nov. 5, 1985).

88. D. PEACEMAN, supra note 52, at 2.
89. Staggs & Herbeck, supra note 25, at 1428.
90. See, e.g., Soden v. Freightliner Corp., 714 F.2d 498, 502-07 (5th Cir. 1983); Zenith

Radio Corp. v. Matsushita Elec. Indus. Co., Ltd., 505 F. Supp 1313, 1329-30 (E.D. Pa. 1981).
Neither case involved a computer simulation or petroleum engineering.

91. See generally Note, Computer Discovery in Federal Litigation" Playing By the Rules,
69 GEo. L.J. 1465 (1981).

92. Indeed, the potential for misuse exists with respect to all forms of computer simula-
tion. See Sprowl, Evaluating the Credibility of Computer-Generated Evidence, 52 CHi.-KENT
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a manner that the simulator will produce only the results desired by the
modeler. The simulator may be infected by the manner in which the
underlying programs are written, by the data used, by model manipula-
tion, or by a combination of these. In turn, expert testimony based upon
a misuse of a reservoir simulation will mislead the trier of fact, rather than
assist as required by the Federal Rules of Evidence.93 Only through com-
plete discovery of all aspects of a party's simulation work can the poten-
tial for misuse be avoided.

Those authorities which have considered the issue generally agree that
complete discovery is permissible against the proponent of expert
testimony based upon a computer simulation. In City of Cleveland v.
Cleveland Electric Illuminating Co.," plaintiffs delivered written reports
by expert witnesses which were based on computer simulations. By a mo-
tion to compel, defendant requested discovery of the experts' data and
programs which were utilized in formulating their opinions. Defendant
argued that the input data and assumptions used in the simulations could
not be deduced from the reports, thus making it impossible for defendant
to adequately prepare for cross-examination of the experts or to deter-
mine even if cross-examination was warranted.95 After reviewing the
precedents, most of which were criminal cases, the court granted the defen-
dant's motion. It held:

where, as here, the expert reports are predicated upon complex
data, calculations and computer simulations which are neither dis-
cernible nor deducible from the written reports themselves, dis-
closure thereof is essential to the facilitation of "effective and ef-
ficient examination of these experts at trial ....""

Similarly, in Pearl Brewing Co. v. Jos. Schlitz Brewing Co.,"7 one party
proposed to use expert testimony based upon an econometric model,
dubbed the "Texas Beer Market Model," constructed to simulate various
market conditions. In response to a motion to compel,98 the court ordered
the proponent of the Model to make available the documentation relating
to the model's programming for the other party's inspection and copy-
ing. The court also allowed the movant to depose the computer experts
who wrote the program even though these experts were not expected to
be called as witnesses at trial.99

L. Rev. 547, 565 (1976), where the author notes that "simulations or models are almost always
simplified representations, and they can prejudice either party by making the other party's
position appear more favorable than it actually is."

93. FED. R. EvID. 702.
94. 538 F. Supp. 1257 (N.D. Ohio 1981).
95. Id. at 1266.
96. Id. at 1267.
97. 415 F. Supp. 1122, 1134-41 (S.D. Tex. 1976).
98. In addition to arguments similar to those made by the defendant in City of Cleveland,

the discovering party contended that denial of access to all of the documentation it requested
would subject it "to expend needlessly many hours trying to resolve the meaning" of the
codes used in the Model's programs. Id. at 1134.

99. Id. at 1140-41. This case also contains a thorough analysis of the circumstances
under which discovery can be obtained from "non-trial" experts. Id. at 1135-41.
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Finally, Professors Wright and Miller have recommended the fol-
lowing:

In order to prepare to defend against the conclusions that are said
to flow from these efforts [computer studies or simulations], the
discovering party not only must be given access to the data that
represents the computer's "work product," but he also must see
the data put into the computer, the programs used to manipulate
the data and produce the conclusions, and the theory or logic
employed by those who planned and executed the experiment. This
often will have to be accomplished under the provision in Rule
26(b)(4) [of the Federal Rules of Civil Procedure] relating to ex-
perts. °10

The second preliminary consideration follows from the first. Not only
must complete access be afforded to the proponent's documents and ex-
pert witnesses regarding the reservoir simulation, such access must be
at an early stage.'0' To discover how the expert prepared his simulator
and to prepare for cross examination, an attorney requires ample time.
This has been recognized by the authorities. In a case concerning expert
testimony based upon a computer simulation, Justice Clark wrote that
it was better practice for the proponent of this testimony to deliver to
his opponent all of the underlying data and theorems employed in the
simulation in advance of trial.' 2 Similarly, in the Manual for Complex
Litigation it is recommended that discovery of computer-generated
evidence be undertaken "well in advance of trial."'0 3

Assuming the court allows complete discovery into the data underly-
ing computer simulation, consideration should first be given to Rule 34
of the Federal Rules of Civil Procedure which covers in part the produc-
tion of documents. Although the framers of the Federal Rules may not
have foreseen the computer age,' the Rules were brought into the com-
puter age with a 1970 amendment to Rule 34(a).105 The amendment ex-
pands the definition of "documents" to include "other data compilations
from which information can be obtained, translated, if necessary, by the
respondent through detection devices into reasonably usable form .... ,10

100. 8 C. WRIGHT & A. MILLER, FEDERAL PRACTICE AND PROCEDURE: CIVIL § 2218, at
660 (1970) (footnotes omitted).

101. Jenkins, supra note 86, at 608.
102. Perma Research& Dev. v. The Singer Co., 542 F.2d 111, 115 (2d Cir.), cert. denied,

429 U.S. 987 (1976). While the appellate court stated that disclosure of the simulation materials
in advance of trial was the better practice, it nonetheless upheld the trial judge's ruling on
the nondisclosure of the expert's computer program in view of the facts of the case. Judge
Van Graafeiland wrote a strong dissent. He argued that the computer simulation must be
made available sufficiently in advance of the trial so that the adverse party will have an
opportunity to examine and test the inputs, program and outputs prior to trial. Perma, 542
F.2d at 125.

103. MANUAL FOR COMPLEX LITIGATION 2D § 21.446, at 61 (1986).
104. Nat'l Union Elec. Corp. v. Matsushita Elec. Indus. Co., Ltd., 494 F. Supp. 1257,

1262 (E.D. Pa. 1980).
105. 8 C. WRIGHT & A. MILLER, supra note 100, § 2218, at 657-58.
106. FED. R. Civ. P. 34.
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The Advisory Committee Notes indicate that, pursuant to this defini-
tion, the party responding to a discovery request may, at its own expense,
be required to furnish the other party with printouts of the data stored
in the respondent's computer.' 7 If the requirement poses an "undue
burden or expense," the respondent may seek relief by asking for restricted
discovery or requiring the discovering party to pay the costs pursuant
to Rule 26(c).'03 The Advisory Committee also state that the discovering
party may also obtain access to the "electronic source itself." 10 9 In other
words, the programming and system design can be discoverable."10 Again,
the responding party may seek relief from the court pursuant to Rule
26(c).'

1I

A hypothetical request for production pursuant to Rule 34 served by
a plaintiff upon a defendant sponsoring simulation-based testimony might
call for the production of the following:

All documents and files referring or relating to or used in any man-
ner in any computer simulator, reservoir simulation or computer
modeling study relating to the North field or any part thereof
which has been performed, conducted or undertaken by defendant
or its expert witness.

If the defendant responds to such data request, plaintiff might expect
to find the following types of documents. First, one would expect the pro-
gram and all related subprograms." ' Purchased, leased or licensed pro-
grams normally include instruction manuals. These instructions may be
of great use to the plaintiff. For instance, the manual could be used to
determine whether the defendant or its experts used the programmer's
recommended time steps. On the other hand, if the program was special-
ly developed to simulate the reservoir concerned in the litigation, one
would find documents relating to the program's design, writing and
"debugging. "13

However, the respondent may claim the program is confidential. For
example, if the respondent to the above document request is a major oil
company which has developed at considerable expense its own computer
program for reservoir simulation, it may be most reluctant to turn over
such program to the discovering party. The respondent cannot unilaterally
refuse to make the program available for inspection as "there is no
absolute privilege for trade secrets and similar confidential informa-

107. FED. R. Civ. P. 34 advisory committee's note, reprinted in U.S.C.S. RULES OF CIVIL
PROCEDURF, Rule 34, at 12-13 (Law. Co-op. 1974).

108. Id.; see also FED. R. Civ. P. 26(c); R. HAYDOCK & D. HERR, DISCOVERY PRACTICE
§ 5.16 (1982 & Supp. 1986).

109. FED. R. Civ. P. 34 advisory committee's note, reprinted in U.S.C.S. RULES OF CIVIL
PROCEDURE, Rule 34, at 12-13 (Law. Co-op. 1974).

110. 8 C. WRIGHT & A. MILLER, supra note 100, § 2218, at 659.
111. Id.
112. For a general discussion of computer programming, see Roberts, A Practitioner's

Primer on Computer-Generated Evidence, 41 U. CHI. L. REV. 254, 259-261 (1974).
113. See Pearl Brewing Co. v. Jos. Schlitz Brewing Co., 415 F. Supp. 1122, 1134-35 (S.D.

Tex. 1976).
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tion...."" Instead, the party may move for a protective order and seek
the court's permission to withhold the program from the discovering par-
ty's inspection.'15 However, it is highly unlikely that the court would grant
such a motion."6 It is far more likely that a court would order production
of the program under the terms of a protective order which would limit
access to the program." 7 In entering such a protective order, the court
will need to balance the need for the discovering party to review the pro-
gram and the need of the respondent for confidentiality." 8

Second, the response to the discovery request would include
documents or computer tapes setting forth the data used in constructing
the simulation. Clearly, access to such data is essential to determine the
validity of the model. If erroneous or incomplete data are used, the results
calculated by the simulator will likewise be in error."'

The data would include the maps 2 ' which formed the geologic model
for the simulator. The discovering party may use the maps to compare
closely the geologic model reflected by the maps with the geology used
in the simulator. For example, did the modeler modify the geology sim-
ply to force a history match? It should also include the production, pres-
sure and PVT data. The data placed in the simulator may be compared
with the actual data which was originally provided to the modeler.
Likewise, the discoveror should be attentive to the data which the modeler
rejected.

The last general type of document which should be produced are those
documents generated in connection with the history matching process.
According to Crichlow, the "engineer must endeavor to keep clearly iden-
tifiable records of each run; by comparing the results from these runs,
he can make new changes to the data." 2' Such data are usually maintained
on magnetic tape in sequential order; but, as discussed above, such tapes
constitute discoverable documents under Rule 34(a). In addition, computer
printouts for the various runs of the simulator should be produced. Careful
review of the various simulation runs is warranted. It is always possible
that the modeler may have obtained calculated results in a run which
favored the opposition's case. 2

114. 8 C. WRIGHT & A. MILLER, supra note 100, § 2043, at 300.
115. FED. R. Civ. P. 26(c)(7).
116. The United States Supreme Court has stated that "orders forbidding any disclosure

of trade secrets or confidential commercial information are rare." Federal Open Mkt. Comm.
v. Merrill, 443 U.S. 340, 362 n.24 (1979).

117. Id.
118. See 8 C. WRIGHT & A. MILLER, supra note 100, § 2043, at 301-03.
119. See generally Roberts, supra note 112, at 263.
120. One textbook author specifically recommends that the modeler retain a copy of each

digitized map so that the modeler can refer to them while doing the history matching. H.
CRICHLOW, supra note 14, at 195.

121. Id at 222-23.
122. It has been argued that fairness may require discovery of the comparable informa-

tion relating to each of the experiments that preceded the one to be used at trial, many of
which may have been "failures" in the sense of yielding results that are more favorable to
the discovering party than to the party presenting the study. 8 C. WRIGHT & A. MILLER,
supra note 100, § 2218, at 660.
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Also, documents reflecting analyses of computer runs made during
the history matching process should be produced. Included here would
be the modeler's notes reflecting manipulations of the model and commen-
tary on the quality of the history match. The modeler often prepares
graphs plotting the observed data and the data calculated by the
simulator. Similarly, tables may be prepared which set forth the observed
data at various points in time with calculated results at the same points.
These graphs and tables assist in simplifying the task of comparing com-
puter runs against one another and against observed data.

As indicated in the above discussion, three possible subjects to be
developed in discovery are the programming of the computer, the data
and the history matching process. Two additional subjects may warrant
development in discovery. First, counsel should inquire into the decision
to conduct a reservoir simulation in the first instance. Secondly, counsel
should inquire whether the model was too complex.

One final issue with respect to computer simulation discovery should
be noted. History matching can be a drawn-out process. If such work is
performed over a protracted period, certain discovery timing problems
can arise. For example, assume that, on June 1, the proponent of a com-
puter simulation makes a complete response to the discovering party's
document request. Assume also that, on June 10, the proponent modifies
the reservoir simulator and, on June 11, runs the simulator, resulting in
a new computer printout. The question thus arises whether the discover-
ing party is entitled to the June 11 computer printout. Some often argue
that discovery requests are "continuing" (usually a reference to the in-
structions accompanying the discovery request is made), and thus the
discovering party should receive the June 11 printout. This argument,
however, is not supported by the Federal Rules of Civil Procedure.

Rule 26(e) provides that, if a discovery response is complete at the
time it is made, there is no duty to supplement, except in those instances
where Rule 26(e) imposes a duty to supplement. In other words, there is
no absolute duty to supplement, and the instances in which a party must
supplement are limited.'23 Accordingly, under the facts above, the discover-
ing party would not be entitled to the June 11 printout. To obtain access
to it, the discovering party will have to make a new discovery request.
By not periodically renewing its discovery requests, this party may find
itself at trial prepared to cross-examine an expert on one model when the
expert is in fact basing his testimony on a later version. A possible solu-
tion to this problem would be to request a court order pursuant to Rule

123. Johnson v. H.K. Webster, Inc., 775 F.2d 1, 7 (1st Cir. 1985). Another issue on ap-
peal in Johnson was whether expert testimony on certain matters should be excluded because
such matters were not disclosed in the original or in supplemental discovery responses. After
being deposed, plaintiff's expert learned that his analysis was flawed, and he then modified
his position. The First Circuit held that Rule 26(e) did not require the exclusion of testimony
based upon the modified portion.
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26(e)(3) which would impose a duty to supplement discovery responses
upon the proponent of the reservoir simulation. 2 4

CONCLUSION

The use of reservoir simulators has increased as computers have
become more powerful and computing costs have decreased. This trend
will continue as simulators are developed for use on personal computers.
Undoubtedly, this will lead to more and more expert testimony based upon
the results of a reservoir simulation study. By this article, it is hoped the
reader has gained a basic understanding as to what an expert witness is
attempting to do when using a reservoir simulation.

124. FED. R. Civ. P. 26(e) advisory committee's note, reprinted in U.S.C.S. RULES OF

CIVIL PROCEDURE, Rule 26, at 253 (Law. Co-op. 1982).
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